Complementarity in marine biodiversity manipulations: reconciling divergent evidence from field and mesocosm experiments.
نویسندگان
چکیده
Mounting concern over the loss of marine biodiversity has increased the urgency of understanding its consequences. This urgency spurred the publication of many short-term studies, which often report weak effects of diversity (species richness) driven by the presence of key species (the sampling effect). Longer-term field experiments are slowly accumulating, and they more often report strong diversity effects driven by species complementarity, calling into question the generality of earlier findings. However, differences among study systems in which short- and long-term studies are conducted currently limit our ability to assess whether these differences are simply due to biological or environmental differences among systems. In this paper, we compared the effect of intertidal seaweed species richness on biomass accumulation in mesocosms and field experiments using the same pool of species. We found that seaweed species richness increased biomass accumulation in field experiments in both short (2-month) and long (3-year) experiments, although effects were stronger in the long-term experiment. In contrast, richness had no effect in mesocosm experiments, where biomass accumulation was completely a function of species identity. We argue that the short-term experiments, like many published experiments on the topic, detect only a subset of possible mechanisms that operate in the field over the longer term because they lack sufficient environmental heterogeneity to allow expression of niche differences, and they are of insufficient length to capture population-level responses, such as recruitment. Many published experiments, therefore, likely underestimate the strength of diversity on ecosystem processes in natural ecosystems.
منابع مشابه
Biodiversity effects on productivity and stability of marine macroalgal communities: the role of environmental context
The influence of biodiversity on ecosystem functioning has been the focus of much recent research, but the role of environmental context and the mechanisms by which it may influence diversity effects on production and stability remain poorly understood. We assembled marine macroalgal communities in two mesocosm experiments that varied nutrient supply, and at four field sites that differed natur...
متن کاملEffects of macroalgal species identity and richness on primary production in benthic marine communities.
Plant biodiversity can enhance primary production in terrestrial ecosystems, but biodiversity effects are largely unstudied in the ocean. We conducted a series of field and mesocosm experiments to measure the relative effects of macroalgal identity and richness on primary productivity (net photosynthetic rate) and biomass accumulation in hard substratum subtidal communities in North Carolina, U...
متن کاملAre large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries.
Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvo...
متن کاملPredation intensity is negatively related to plant species richness in a benthic marine community
Plant biodiversity affects primary productivity and resource utilization in terrestrial and aquatic ecosystems, and may also influence other key ecological processes such as predator–prey interactions. We tested the hypotheses that predation intensity is negatively related to plant species richness, and that prey density is positively related to plant species richness. We performed one field an...
متن کاملThe Challenge of Ecophysiological Biodiversity for Biotechnological Applications of Marine Microalgae
In this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 48 شماره
صفحات -
تاریخ انتشار 2008